Lesson 2: Composting Fundamentals

Learning Objectives:

- Be familiar with the microbes responsible for composting
- Understand conditions and impacts of aerobic vs. anaerobic decomposition
- Know the five fundamental principles of composting
- Know the characteristics and functions of bulking agents

Composting is a Microbial Process

Organic Materials

+

Water

+

Air

Microbes

 CO_2

+

Water Vapor

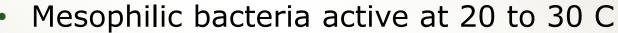
+

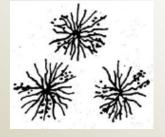
Heat

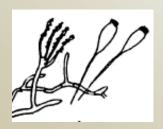
+

Compost

Aerobic vs. Anaerobic Digestion


Organic Materials + Water + Water + Digestate + Digestate


Composting Microbes



 Actinomycetes – not as efficient as bacteria, prefer woody materials, active at mesophilic temperatures

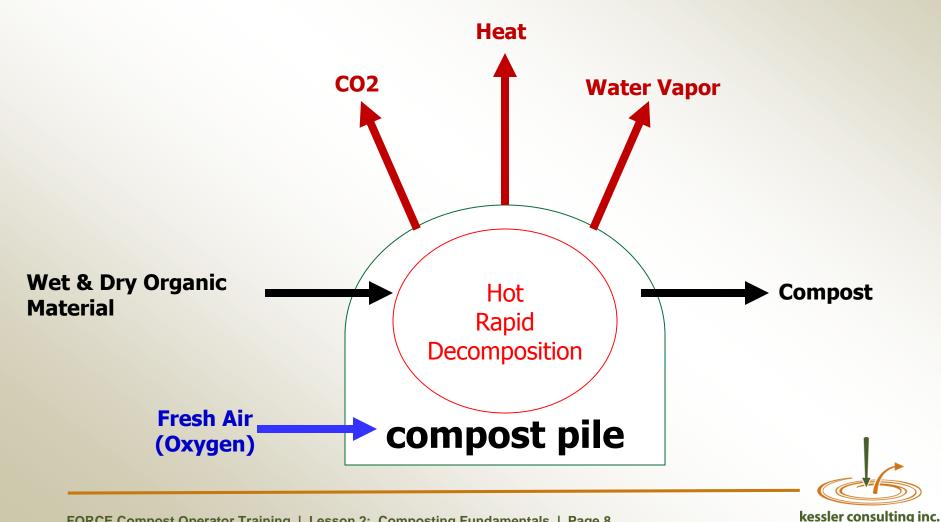
 Fungi – major decomposers but not as efficient as bacteria, active at mesophilic temperatures

Composting Macro-organisms

- Earthworms capable of fully digesting organic waste, they coat materials with film that helps retain nutrients
- Insects many kinds found in compost, they feed on organic matter, micro-organisms and other macro-organisms
- Nematodes eat bacteria, fungal spores & other micro-organisms
- Mites primarily eat yeast cells

Primary Needs of Composting Microbes

- Carbon for carbohydrates for energy
- Nitrogen for nutrients and proteins to build biomass
- Oxygen for aerobic respiration
- Moisture necessary for biological functions
- pH initial range of 5 to 8 is preferable



Recommended Conditions for Rapid Composting

Condition	Reasonable Range	Preferred Range
Carbon-to-Nitrogen (C:N) Ratio	20:1 - 60:1	25:1 - 35:1
Moisture content	40% - 65%	50% - 60%
Temperature	110°F - 150°F	130°F - 140°F
рН	5.0 - 9.0	6.5 - 8.0
Porosity	30% - 80%	50% - 80%

Composting Optimizes Conditions for Decomposition

innovative waste solutions

The Practical Goals of Composting

- Facilitate microbial decomposition
- Generate sufficient microbial activity to generate enough heat to destroy weed seeds and pathogens
- Try to make the highest quality product in the most efficient way possible
- Focus on process control and act quickly when problems occur so that they do not become nuisances

Five Fundamental Principles

- Proper ratio of Carbon to Nitrogen
- Proper particle size to balance surface area and pore space
- 3. Proper moisture content
- 4. Mix materials and do not compact
- 5. Monitor temperature, moisture & odor

Principle 1 – Proper C:N Ratio

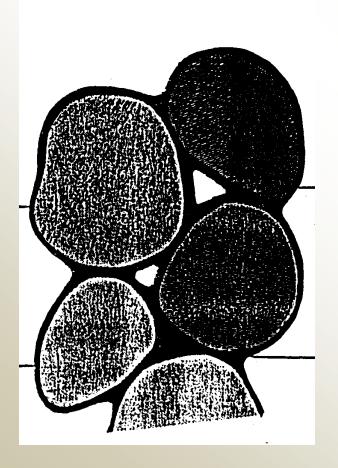
- Proper Carbon to Nitrogen (C:N) ratio is necessary to optimize composting conditions
- C:N = 30:1 to 40:1 is optimum for composting
- If C:N < 20:1, odors occur and nutrients may be lost
- If C:N > 40:1, composting process slows down

Good Sources of Carbon

Source	Carbon:Nitrogen Ratio
Yard trash	50 – 90:1
Straw & hay	50 – 80:1
Wood chips & sawdust	250 – 500:1

Good Sources of Nitrogen

Source	C:N Ratio
Vegetable Scraps	10 – 30:1
Fruit Scraps	10 – 30:1
Grass & Garden Cleanings	10 – 20:1
Chicken Manure	10 – 25:1
Cow Manure	20 – 30:1
Horse Manure	25 – 30:1



Principle 2 – Proper Particle Size

- Breaking large pieces of materials into small pieces will increase the surface area where "bugs" can live and feed
- This speeds up composting
- Not too big and not too small a mixture of
 1/4 4 inch size materials is ideal
- Pieces that are too small will not allow fresh air to flow through it

Principle 3 – Proper Moisture and Air

- A compost pile needs water because the organisms grow in a moist environment
- However, too much water and organisms drown without oxygen
- 40% 50% moisture content (MC) is optimum to provide organisms with both air and water

Principle 4 – Mix Well; Do Not Compact

- Mix carbon & nitrogen materials together to provide a balanced diet
- Add water if mixture is too dry; or add more dry materials if mixture is too wet
- Do not compress/compact the mixture; keep space for air to flow in the compost pile

Principle 5 - Monitor the Compost Process

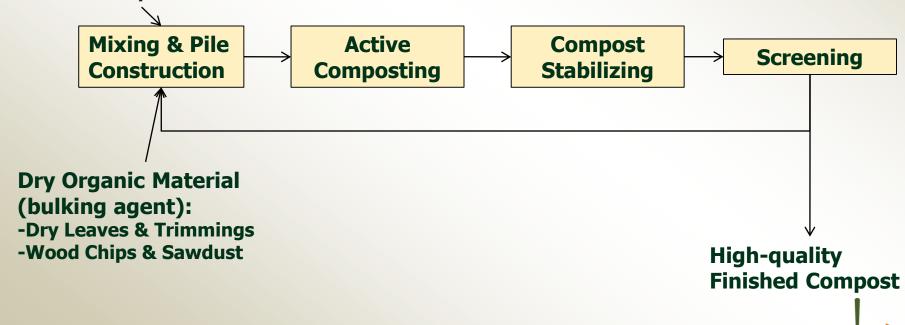
- Temperature the primary way to determine if the bugs are healthy
- Moisture & Air easily assessed by inspecting the quality of the compost pile
- Smell Odor is a key indicator of whether composting is progressing properly

What is a Bulking Agent?

"Dry material that provides carbon, structural support and pore space for nitrogenous materials"

- Must be readily available for composting operation, e.g. ground yard trash
- Ideal bulking agent is dry
- Amount used depends on C:N ratio & Moisture Content

Multiple Functions of Bulking Agent


- Carbon source for high nitrogen materials
- Structural support and low bulk density to provide pore space
- Low MC for wet materials

Four Stages of Composting Operation

Wet Organic Material:

- -Food waste
- -Manure
- -Grass clippings
- -Garden scraps

Two Types of Materials Are Needed

Dry Organic Materials

- Are high in carbon & low nitrogen
- Tend to be dry
- Have structure to allow aeration
- Carbon is primary food for composting organisms
- Includes such materials as:
 - Wood chips
 - Brush and tree trimmings

Wet Organic Materials

- Are high in nitrogen & low in carbon
- Have a high moisture content
- Nitrogen is primary building block for composting organisms
- Includes such materials as:
 - Grass
 - Fruits
 - Vegetables

Putting the Fundamentals into Practice

A correctly built and managed composting pile will:

- Reach high temperatures
- Destroy weed seeds
- Control pathogens
- Avoid odor problems
- Produce finished compost in 2 3 months

Putting the Fundamentals into Practice

- Managing the composting operation to optimize conditions requires many things (a preview of upcoming training topics):
 - Site selection and design
 - Composting methods
 - Equipment and staffing
 - Operational controls
 - Monitoring & recordkeeping
 - Site maintenance
 - But first, Regulatory Compliance

